From Sounds to Music: Learning the Bohlen-Pierce Scale

Psyche Loui Beth Israel Deaconess Medical Center Harvard Medical School

Bohlen-Pierce Scale Symposium March 7, 2010

The world knows and loves music

Whence musical knowledge?

Perspectives:

- Developmental studies
- Cross-cultural studies
- Artificial system
 - Bohlen-Pierce scale

The tritave as a musical system

Bohlen-Pierce

Composing in the Bohlen-Pierce scale

 $F = 220 * 3^{13}$

Krumhansl, 1987 Loui & Wessel, 2008 Composing melody from harmony – applying a finite-state grammar

Composing melody from harmony – applying a finite-state grammar

Melody: $10 \rightarrow 10 \rightarrow 4 \rightarrow 7 \rightarrow 6 \rightarrow 10$

Loui & Wessel, 2008

Can we learn the B-P scale?

- General design of behavioral studies:
- 1. PRE-TEST
 - assess baseline
- 2. EXPOSURE to melodies in one grammar
 - ~30 minutes
- 3. POST-TESTS
 - assess learning

Learning a musical system: basic questions

- Can we recognize old melodies?
 - 2-AFC test of recognition
- Can we generalize to new melodies?
 - 2-AFC test of generalization
- Can we learn to like new melodies?
 - Preference ratings

Double dissociation between grammar learning and preference change

Loui, Wessel & Hudson Kam, in press.

Learning a new musical system: more questions

- Can we learn to expect frequent tones?
- Probe tone ratings test
 - Probe tone profiles reflect frequencies of compositions

Krumhansl, 1990

Testing for expectation for frequencies

Probe tone ratings test (Krumhansl, 1990)

- Melody \rightarrow tone
- Task: rate how well the tone fits the melody
 - Scale of 1 through 7
- Tests conducted both pre- and postexposure

Pre-exposure probe tone ratings

Loui, Wessel & Hudson Kam, in press.

Post-exposure probe tone ratings

Loui, Wessel & Hudson Kam, in press.

Correlating ratings with exposure

Loui, Wessel & Hudson Kam, in press.

Sounds give rise to implicit learning of music

Event-Related Potentials can measure brain activity – Western music

Loui et al, 2005

Event-Related Potentials can measure brain activity in the Bohlen Pierce scale

- Experiment design:Chord progressions:
 - Standard 70%
 - Deviant 20% 📢
 - Fadeout 10% 🍕
- Amplitude change detection task
 - Attending to auditory stimuli but not to harmony
 - Dissociating perception from decision-making

ERP responses to Bohlen-Pierce scale

500 – 550ms

ERPs for improbable chords in B-P scale elicit EAN and LN.

Effects driven by probability?

Probability of exposure

VS.

surface features of stimulus

Unequal probability

Learning probability during exposure

ERP amplitude reflects individual differences

Statistics of sounds give rise to musical knowledge

Sound spectrum constrains knowledge in music

Sound spectrum constrains knowledge in music

Sound spectrum constrains knowledge in speech and language?

Acknowledgements

- David Wessel
- Erv Hafter
- Carla Hudson Kam
- Bob Knight
- Marty Woldorff (Duke)
- Carol Krumhansl (Cornell)

- Center for New Music & Audio
 Technologies
- Auditory Perception Lab
- Language & Learning Lab
- Knight Lab

- UC Berkeley Psychology
- Research Assistants
 - Elaine Wu Charles Li Pearl Chen Shaochen Wu Judy Wang Young Lee

|NM/1